Biblioteca de los Sistemas de Salud de la OMS
Cambiar a la version en inglésCambiar a la version en francés
WHO Monographs on Selected Medicinal Plants - Volume 1
(295 pages)

Índice de contenido
Ver el documentoAcknowledgements
Ver el documentoIntroduction
Ver el documentoBulbus Allii Cepae
Ver el documentoBulbus Allii Sativi
Ver el documentoAloe
Ver el documentoAloe Vera Gel
Ver el documentoRadix Astragali
Ver el documentoFructus Bruceae
Ver el documentoRadix Bupleuri
Ver el documentoHerba Centellae
Ver el documentoFlos Chamomillae
Ver el documentoCortex Cinnamomi
Ver el documentoRhizoma Coptidis
Ver el documentoRhizoma Curcumae Longae
Ver el documentoRadix Echinaceae
Ver el documentoHerba Echinaceae Purpureae
Ver el documentoHerba Ephedrae
Ver el documentoFolium Ginkgo
Ver el documentoRadix Ginseng
Ver el documentoRadix Glycyrrhizae
Ver el documentoRadix Paeoniae
Ver el documentoSemen Plantaginis
Ver el documentoRadix Platycodi
Ver el documentoRadix Rauwolfiae
Ver el documentoRhizoma Rhei
Ver el documentoFolium Sennae
Ver el documentoFructus Sennae
Ver el documentoHerba Thymi
Ver el documentoRadix Valerianae
Ver el documentoRhizoma Zingiberis
Ver el documentoAnnex. Participants in the WHO Consultation on Selected Medicinal Plants

Radix Bupleuri


Radix Bupleuri consists of the dried root of Bupleurum falcatum L. or B. falcatum L. var. scorzonerifolium (Willd.) Ledeb. (Apiaceae) (1, 2).


Bupleurum chinense D.C. and B. scorzonerifolium Willd. have been treated as different species (1) but are actually synonyms of B. falcatum L. var. scorzonerifolium (3). Apiaceae are also referred to as Umbelliferae.

Selected vernacular names

Beichaihu, bupleurum root, ch'ai hu, chaifu, chaihu, chaiku-saiko, Chinese thorowax root, juk-siho, kara-saiko, mishima-saiko, nanchaihu, northern Chinese thorowax root, radix bupleur, saiko, shi ho, shoku-saiko, wa-saiko, Yamasaiko (1–5).


A perennial herb up to 1m tall; base woody and the rhizome branching. Stem slender, flexuous, branches spreading. Basal leaves lanceolate, upper lamina broad, lower narrowed into a petiole, veins 7, apex acute, mucronate; middle and upper leaves linear to lanceolate, gradually shorter, falcate, veins 7–9, base slightly amplexicaul, apex acuminate. Involucre of 1–3 minute bracts or lacking. Rays 5–8. Involucel of 5 minute, 3-veined bractlets, shorter than the flowering umbellet. Pedicels shorter than the fruits. Fruit oblong, 3–4 mm long; furrows 3- vittate (4, 6).

Plant material of interest: dried roots

General appearance

Single or branched root, of long cone or column shape, 10–20 cm in length, 0.5– 1.5 cm in diameter; occasionally with remains of stem on crown; externally light brown to brown and sometimes with deep wrinkles; easily broken, and fractured surface somewhat fibrous (2).

Organoleptic properties

Odour, characteristic, slightly aromatic to rancid; taste, slightly bitter (1, 2).

Microscopic characteristics

Transverse section reveals often tangentially extended clefts in cortex, the thickness reaching a third to a half of the radius, and cortex scattered with a good many intercellular schizogenous oil canals 1.5–3.5 cm in diameter; vessels lined radially or stepwise in xylem, with scattered fibre groups; in the crown pith also contains oil canals; parenchyma cells filled with starch grains and some oil drops. Starch grains composed of simple grains, 2–10µm in diameter, or compound grains (2).

Powdered plant material

Information not available. Description to be established by appropriate national authorities.

Geographical distribution

Indigenous to northern Asia, northern China, and Europe (4, 6).

General identity tests

Macroscopic and microscopic examinations (1, 2), microchemical detection for saponins (1, 2), and thin-layer chromatographic analysis for triterpene saponins with reference to saikosaponins (2).

Purity tests


The test for Salmonella spp. in Radix Bupleuri should be negative. The maximum acceptable limits of other microorganisms are as follows (7–9). For preparation of decoction: aerobic bacteria-not more than 107/g; fungi-not more than 105/g; Escherichia coli-not more than 102/g.


Contains triterpene saponins (saikosaponins). Quantitative level to be established by appropriate national authorities, but should be not less than 1.5% according to literature data.

Foreign organic matter

Not more than 10% of stems and leaves (2). No roots of B. longiradiantum Turcz., which is toxic (1, 5). Not more than 1% of other foreign matter (2).

Total ash

Not more than 6.5% (2).

Acid-insoluble ash

Not more than 2% (2).

Dilute ethanol-soluble extractive

Not less than 11% (2).

Pesticide residues

To be established in accordance with national requirements. Normally, the maximum residue limit of aldrin and dieldrin for Radix Bupleuri is not more than 0.05 mg/kg (9). For other pesticides, see WHO guidelines on quality control methods for medicinal plants (7) and WHO guidelines for predicting dietary intake of pesticide residues (10).

Heavy metals

Recommended lead and cadmium levels are no more than 10 and 0.3mg/kg, respectively, in the final dosage form of the plant material (7).

Radioactive residues

For analysis of strontium-90, iodine-131, caesium-134, caesium-137, and plutonium-239, see WHO guidelines on quality control methods for medicinal plants (7).

Other tests

Tests for moisture and for water-soluble extractive to be established by national authorities.

Chemical assays

Total saikosaponins determination by colorimetric analysis (11), and highperformance liquid chromatography analysis for saikosaponins A, B1, B2, and D (12, 13).

Major chemical constituents

The major constituents are triterpene saponins, including saikosaponins A, B1–4, D, E, F and H and related compounds including saikogenins A–G (5, 14). Two biologically active polysaccharides, bupleurans 2IIb and 2IIc, have also been isolated from the roots of B. falcatum (15, 16). Representative structures of saikosaponins are presented in the figure.

Dosage forms

Decoction (5). Store crude plant material in a dry environment protected from moths, light, and moisture (1, 2).

Medicinal uses

Uses supported by clinical data


Uses described in pharmacopoeias and in traditional systems of medicine

Treatment of fever, pain, and inflammation associated with influenza, and the common cold (1, 2, 5). The drug is also used as an analgesic for the treatment of distending pain in the chest and hypochondriac regions, and for amenorrhoea (1). Extracts have been used for the treatment of chronic hepatitis, nephrotic syndrome, and autoimmune diseases (1, 5).

Uses described in folk medicine, not supported by experimental or clinical data

Treatment of deafness, dizziness, diabetes, wounds, and vomiting (5).


Experimental pharmacology

Antipyretic and analgesic activity

A number of in vivo studies have confirmed the antipyretic activity of Radix Bupleuri in the treatment of induced fevers in animals. Oral administration of a Bupleurum decoction (5 g/kg) to rabbits with a heat-induced fever decreased body temperature to normal levels within 1.5 hours (5). Subcutaneous injection of an aqueous ethanol extract of Bupleurum roots (2.2 ml/kg, 1.1 g crude drug/ml) significantly reduced fevers in rabbits injected with Escherichia coli (17).

Oral administration of saikosaponins to rats produced hypothermic and antipyretic effects (5). Furthermore, intraperitoneal injection of the volatile oil (300mg/kg) or saponins (380 and 635 mg/kg) isolated from B. chinense (B. falcatum) roots effectively decreased fever in mice induced by yeast injections (18). Oral administration of 200–800mg/kg of a crude saponin fraction to mice produced sedative, analgesic, and antipyretic effects, but no anticonvulsant effect or reduction in muscle tone was observed (14). Saikosaponins are believed to be the major active antipyretic constituents in Radix Bupleuri extracts.

Analgesic activity of Bupleurum extracts is also supported by in vivo studies. Injections of a crude Bupleurum extract or purified sapogenin A inhibited writhing induced by intraperitoneal injection of acetic acid in mice (5). The saikosaponins appear to be the active analgesic constituents of the drug. Intraperitoneal injection of mice with a total saponin fraction derived from B. chinense (B. falcatum) produced a marked analgesic effect on the pain induced by electroshock (5). Moreover, orally administered saikosaponins were reported to have an analgesic effect in mice (tail pressure test) (5).

Sedative effects

In vivo studies have also confirmed the sedative effects of Radix Bupleuri. Both the crude saikosaponin fraction and saikogenin A are reported to have signifi- cant sedative effects (5). In vivo studies, using the rod climbing test, demonstrated that the sedative effect of the saikosaponins (200–800mg/kg) in mice was similar to that of meprobamate (100mg) (5). Oral administration of saikosides extracted from B. chinense (B. falcatum) or saikosaponin A has also been reported to prolong cyclobarbital sodium-induced sleep (5). Furthermore, intraperitoneal injection of saikogenin A inhibited rod climbing in mice and antagonized the stimulant effects of metamfetamine and caffeine (5).

Anti-inflammatory activity

Anti-inflammatory activity of Radix Bupleuri has been demonstrated by in vivo studies. Intraperitoneal injection of the saponin fraction, the volatile oil, or a crude extract from B. chinense (B. falcatum) significantly inhibited carrageenin-induced rat paw oedema (5). The saikosaponins are the active antiinflammatory constituents of the drug (19, 20). Oral administration of a crude saikosaponin fraction (2 g/kg) from B. falcatum inhibited dextran-, serotonin-, or croton oil-induced rat paw oedema (5, 21). Structure–activity correlations have revealed that saikosaponins A and D both have anti-inflammatory activity, while saikosaponin C does not (22). The potency of anti-inflammatory activity of the saikosaponins is similar to that of prednisolone (5).

Immune regulation activity

In vitro studies have demonstrated that a hot-water extract from the root of B. falcatum enhanced the antibody response and inhibited mitogen-induced lymphocyte transformation (23). An acidic pectic polysaccharide, bupleuran 2IIb, isolated from the roots of B. falcatum, was found to be a potent enhancer of immune complex binding to macrophages (24). The activity of this polysaccharide appeared to be due to its ability to enhance the Fc receptor function of macrophages. This study has shown that the binding of glucose oxidase– antiglucose oxidase complexes (a model of immune complexes) to murine peritoneal macrophages was stimulated by treatment with the polysaccharide (24). Bupleuran 2IIb appears to up-regulate both FcRI and FcRII receptor expression on the macrophage surface in a dose-dependent manner (25). The upregulation of the Fc receptor by bupleuran 2IIb depends on an increase in intracellular calcium and activation of calmodulin (25). Only saikosaponin D has been shown to enhance Fc receptor expression of thioglycollate-elicited murine peritoneal macrophages in vitro (26). This activity appears to be due to the translocation of FcR from the internal pool to the cell surface. In vitro studies with saikosaponin D have shown that this compound was able to control bidirectionally the growth response of T lymphocytes stimulated by concanavalin A, anti-CD3 monoclonal antibody, and calcium ionophore A23187 plus phorbol 12-myristate 13-acetate (27). Saikosaponin D also promoted interleukin-2 production and receptor expression, as well as c-fos gene transcription (28). The results of this study suggest that saikosaponin D exerts its immunostimulant effects by modification of T lymphocyte function (28).

Antiulcer activity

Antiulcer activity of Radix Bupleuri has been demonstrated both in vivo and in vitro. A polysaccharide fraction of a hot-water extract of the root of B. falcatum was reported to inhibit significantly hydrochloric acid- or ethanol-induced ulcerogenesis in mice (15). The polysaccharide fraction (BR-2, 100mg/kg) had potent antiulcer activity, and its activity was similar to that of sucralfate (100 mg/kg) (29). BR-2 significantly protected against a variety of gastric lesions, water-immersion stress ulcer and pylorus-ligation ulcer in mice and rats (29). By oral, intraperitoneal, or subcutaneous administration, BR-2 was further found to be effective against hydrochloric acid- or ethanol-induced gastric lesions suggesting that BR-2 acted both locally and systemically (29). The mechanism of antiulcer action appears to be due to a reinforcement of the protective mucosal barrier as well as an antisecretory action on acid and pepsin (30). Saponins isolated from B. falcatum root have also been reported to have weak antiulcer activity in the pylorus-ligation ulcer model (30).

Hepatoprotectant activity

Crude saponins of B. falcatum, administered orally to rats at a daily dose of 500mg/kg for 3 days, normalized liver functions as determined by serum alkaline phosphatase levels in rats treated with carbon tetrachloride (31). Treatment of rats with saikosaponins 2 hours before treatment with D-galactosamine inhibited the increase in serum aspartate aminotransferase and alanine aminotransferase levels produced by damage of liver tissues (31). Conversely, saikosaponins did not affect an increase in serum alanine aminotransferase and experimental cirrhosis in rats caused by carbon tetrachloride intoxication (32).

Clinical pharmacology

Antipyretic activity

The antipyretic activity of B. chinense (B. falcatum) has been investigated in patients with fevers caused by the common cold, influenza, malaria, and pneumonia (5). In one clinical study of 143 patients treated with the herb, fevers subsided within 24 hours in 98.1% of all cases of influenza, and in 87.9% of all cases of the common cold (5, 33). In another study, 40 patients with fever of pathological origin had a significant reduction in fever (1–2°C), but the antipyretic effect of Radix Bupleuri in these patients was transient unless combined with antibiotic therapy (5, 34).


No information available.


Radix Bupleuri causes sedation when used in large doses (5); therefore, patients should be cautious when operating a motor vehicle or hazardous machinery.


Drug interactions

The use of alcohol, sedatives and other central nervous system depressants in conjunction with Radix Bupleuri may cause synergistic sedative effects. No clinical studies have evaluated this possible interaction; however, patients should be cautioned about taking the drug with alcohol, sedatives, or other drugs known to cause depression of the central nervous system.

Carcinogenesis, mutagenesis, impairment of fertility

Methanolic extracts of B. chinense (B. falcatum) were not mutagenic in the modified Ames test using Salmonella typhimurium TA 98 and TA 100, in the presence or absence of rat liver S-9 mix (35, 36). Furthermore, hot-water extracts of Bupleurum were shown to have antimutagenic activity in AFB1-induced mutagenesis in the mouse Salmonella typhi/mammalian microsomal system (Ames test) (strain TA 98) and in the in vivo mouse bone marrow cell chromosome aberration and mouse bone marrow eosinophil micronucleus test (37). There is one report that a hot-water extract of B. falcatum enhanced the mutagenic activity of Trp-P-1 with S9 mix in Salmonella typhimurium (38).

Pregnancy: teratogenic and non-teratogenic effects

No data available; therefore, B. falcatum should not be administered during pregnancy.

Nursing mothers

Excretion of the drug into breast milk and its effects on the newborn infant have not been established; therefore, Bupleurum should not be administered to nursing women.

Paediatric use

Guidelines for the administration of the drug to children are not available.

Other precautions

No information available concerning general precautions or drug and laboratory test interactions.

Adverse reactions

Mild lassitude, sedation, and drowsiness have been reported as frequent sideeffects (5). Large doses have also been reported to decrease appetite and cause pronounced flatulence and abdominal distension. Three incidents of allergic reactions were reported in patients given intramuscular injections of the drug (5).


Generally, doses of 3–9g/day (1).


1. Pharmacopoeia of the People's Republic of China (English ed.). Guangzhou, Guangdong Science and Technology Press, 1992.

2. The Pharmacopoeia of Japan XII. Tokyo, The Society of Japanese Pharmacopoeia, 1991.

3. Wolf H. Umbelliferae-Apioideae-Bupleurum, Trinia et reliqceae Ammineae hecteroclitae. In: Engler A, ed. Pflanzenreich IV. Leipzig, Verlag von Wilhelm Engelmann, 1910.

4. Keys JD. T, Chinese herbs, their botany, chemistry and pharmacodynamics. Rutland, VT, CE Tuttle, 1976.

5. Chang HM, But PPH, eds. Pharmacology and applications of Chinese materia medica, Vol. 2. Singapore, World Scientific Publishing, 1987.

6. Nasir E. Umbelliferae. In: Nasir E, Ali SI, eds. Flora of West Pakistan. Karachi, Pakistan, Stewart Herbarium, 1972:60.

7. Quality control methods for medicinal plant materials. Geneva, World Health Organization, 1998.

8. Deutsches Arzneibuch 1996. Vol. 2. Methoden der Biologie. Stuttgart, Deutscher Apotheker Verlag, 1996.

9. European Pharmacopoeia, 3rd ed. Strasbourg, Council of Europe, 1997.

10. Guidelines for predicting dietary intake of pesticide residues, 2nd rev. ed. Geneva, World Health Organization, 1997 (unpublished document WHO/FSF/FOS/97.7; available from Food Safety, WHO, 1211 Geneva 27, Switzerland).

11. Hiai S et al. A simultaneous colorimetric estimation of biologically active and inactive saikosaponins in Bupleurum falcatum extracts. Planta medica, 1976, 29:247– 257.

12. Shimizu K, Amagaya S, Ogihara Y. Separation and quantitative analysis of saikosaponins by high-performance liquid chromatography. Journal of chromatography, 1986, 268:85–91.

13. Han DS, Lee DK. Separation and determination of saikosaponins in Bupleuri Radix with HPLC. Korean journal of pharmacognosy, 1985, 16:175–179.

14. Tang W, Eisenbrand G, eds. Chinese drugs of plant origins, chemistry, pharmacology and use in traditional and modern medicine. Berlin, Springer-Verlag, 1992.

15. Yamada H. Purification of anti-ulcer polysaccharides from the roots of Bupleurum falcatum. Planta medica, 1991, 57:555–559.

16. Yamada H, Hirano M, Kiyohara H. Partial structure of an anti-ulcer pectic polysaccharide from the roots of Bupleurum falcatum L. Carbohydrate research, 1991, 219:173– 192.

17. Zhu Y. Pharmacology and applications of Chinese medicinal materials. Beijing, People's Medical Publishing House, 1958.

18. Zhou ZC et al. Chinese pharmaceutical bulletin, 1979, 14:252 (article in Chinese).

19. Yamamoto M, Kumagai A, Yamamura Y. Structure and actions of saikosaponins isolated from Bupleurum falcatum L. I. Anti-inflammatory action of saikosaponins. Arzneimittel-Forschung, 1974, 25:1021–1023.

20. Abe H et al. Pharmacological actions of saikosaponins isolated from Bupleurum falcatum. 1. Effects of saikosaponins on liver function. Planta medica, 1980, 40:366– 372.

21. Shibata M et al. Pharmacological studies on the Chinese crude drug saiko, Bupleurum falcatum. Hoshi yakka daigaku kiyo, 1974, 16:77.

22. Shibata S. Medicinal chemistry of triterpenoid saponins and sapogenins. Proceedings of the 4th Asian Symposium on Medicinal Plants and Spices. Bangkok, Mahidol University, 1981:59–70.

23. Mizoguchi Y et al. Effects of saiko on antibody response and mitogen-induced lymphocyte transformation in vitro. Journal of medical and pharmaceutical society for WAKAN-YAKU, 1985, 2:330–336.

24. Matsumoto T et al. The pectic polysaccharide from Bupleurum falcatum L. enhances immune-complexes binding to peritoneal macrophages through Fc receptor expression. International journal of immunopharmacology, 1993, 15:683–693.

25. Yamada H. Pectic polysaccharides from Chinese herbs-structure and biological activity. Carbohydrate polymers, 1994, 25:269–276.

26. Matsumoto T, Yamada H. Regulation of immune complex binding of macrophages by pectic polysaccharide from Bupleurum falcatum L.-pharmacological evidence for the requirement of intracellular calcium/calmodulin on Fc receptor up-regulation by bupleuran 2iib. Journal of pharmacy and pharmacology, 1995, 47:152–156.

27. Ushio Y, Abe H. Effects of saikosaponin-D on the functions and morphology of macrophages. International journal of immunopharmacology, 1991, 13:493–499.

28. Kato M et al. Characterization of the immunoregulatory action of saikosaponin D. Cellular immunology, 1994, 159:15–25.

29. Sun XB, Matsumoto T, Yamada H. Effects of a polysaccharide fraction from the roots of Bupleurum falcatum L. on experimental gastric ulcer models in rats and mice. Journal of pharmacy and pharmacology, 1991, 43:699–704.

30. Shibata M et al. Some pharmacological studies on the crude drugs possessing antiinflammatory properties of the Bupleurum and the leaves of fig. Shoyakugaku zasshi, 1976, 30:62–66.

31. Arichi S, Konishi H, Abe H. Studies on the mechanism of action of saikosaponin. I. Effects of saikosaponin on hepatic injury induced by D-galactosamine. Kanzo, 1978, 19:430–435.

32. Zhao MQ et al. Preventive and therapeutic effects of glycyrrhizin, glycyrrhetic acid and saikosides on experimental cirrhosis in rats. Yao hsueh hsueh pao, 1983, 18:325– 331.

33. Nanjing Medical College. Encyclopedia of Chinese materia medica, Vol. 2. Shanghai, Shanghai People's Publishing House, 1978:3763.

34. Wuxi First People's Hospital. Wuxi yiyao [Wuxi medical journal], 1973, 1:42 (article in Chinese).

35. Yamamoto H, Mizutani T, Nomura H. Studies on the mutagenicity of crude drug extracts. I. Yakugaku zasshi, 1982, 102:596–601.

36. Sakai Y et al. Effects of medicinal plant extracts from Chinese herbal medicines on the mutagenic activity of benzo[a]pyrene. Mutation research, 1988, 206:327–334.

37. Liu DX. Antimutagenicity screening of water extracts from 102 kinds of Chinese medicinal herbs. Chung-kuo tung yao tsa chih, 1990, 15:640–642.

38. Niikawa M et al. Enhancement of the mutagenicity of TRP-P-1, TRP-P-2 and benzo[alpha]pyrene by Bupleuri radix extract. Chemical and pharmaceutical bulletin, 1990, 38:2035–2039.


Ir a la sección anterior Ir a la siguiente sección
Última actualización: le 4 mayo 2012